Promoting Daily Physical Activity by Means of Mobile Gaming: A Review of the State of the Art

Monique Tabak, PhD1,2 Marit Dekker-van Weering, PhD2 Hylke van Dijk, PhD3 and Miriam Vollenbroek-Hutten, PhD1,2

Abstract

Objectives: To review mobile games and gaming applications that claim to improve physical activity behavior in daily life.

Search Methods: We searched PubMed, Web of Science, and the ACM Digital Library and performed a manual search of relevant journals and reference lists. Studies that reported on a mobile game that requires players to perform physical activity in daily life and where the game has specific goals, rules, and feedback mechanisms were included. This excludes non-mobile exergames. Theoretical foundations, game characteristics, and evaluation methodologies were assessed.

Results: In total, 797 articles were identified through the search, of which 11 articles were included. The reviewed studies show that there is limited theoretical foundation for the game development, and most studies used goal setting as a motivation strategy to engage people in playing the game. There was a large variety in game characteristics found, although the majority of the studies used metaphors or avatars to visualize activity, whereas feedback was mostly provided in relation to the goal. Rewards and competition were the most commonly incorporated game elements. The evaluations were focused on feasibility, and clinical evidence is lacking with only two randomized controlled studies found.

Conclusions: This review provides a first overview of mobile gaming applications to promote daily life physical activity and shows this as a new research area with demonstration of its acceptability and feasibility among the users. Clinical effectiveness and the added value of gaming in changing daily activity behavior have by far not yet been established.

Introduction

Regular physical activity is related to better health and lower mortality and could reduce the risk of (chronic) diseases like coronary heart disease, type 2 diabetes, and some cancers.1,2 However, two-thirds of the adult populations of European countries are insufficiently active to support physically healthy living.3 Reviews, moreover, show that treatment programs that aim to reduce inactive behavior and increase physical activity in adults are only marginally effective.4,5 In these programs, objective measurements of activity are mostly lacking, and persons do not receive feedback and coaching in daily life, only at regular encounters with the healthcare professional. Cognitive behavioral models explaining behavioral change indicate that persons need to be aware of their activity behavior; otherwise, treatment is unlikely to be effective.6

Recent advances include the effective use of mobile technologies (e.g., smartphones and activity sensors) to promote a physically active lifestyle.7 These applications can be especially suitable to provide real-time support and as such improve awareness of activity behavior throughout the day. Text messaging is the primary technology used, for which short-term benefits are reported that could be clinically significant if sustained in the long term.8 The concept of more comprehensive feedback (e.g., real time and with motivational cues) has recently been investigated among users with chronic low back pain,9 chronic fatigue syndrome,10 and chronic obstructive pulmonary disease.11 Results show that users significantly respond to the feedback, but these applications are still not sufficiently effective as compliance to this feedback decreases over time,10 and changes in activity behavior seem to diminish after a few weeks of use.12 Studies have shown that use of an application...
significantly relates to improvement in health outcomes,12,13
and engagement in the technology thus seems important.

The incorporation of motivational strategies by the use of
game design has been shown to have a positive effect on
motivation and engagement.14 The numbers of publications
on games that aim to stimulate physical activity have been
rapidly growing in the past years. However, the majority
of these games concern non-mobile “exergames,” which focus
on exercise sessions to be executed at home or at a rehabil-
itation center.15 Although these are positively received, they
fail to accomplish the transfer of physical activities to daily
life (e.g., gardening, walking) and thus in changing actual
activity behavior in the long term. To achieve this, gaming
should go beyond the walls of the home or care center into the
users’ everyday lives, where real-world activity can interact
with a game.16 These games are not as common as exergames
but are the up and coming focus of mobile technologies, in-
creasing in both research and commercial areas.

We would expect that mobile games could have an added
value in changing daily activity behavior compared with
non-game interventions as mobile gaming (1) triggers ac-
tivity throughout the day given players’ actions, (2) enables
advanced awareness and personalization, which are impor-
tant aspects in behavioral models, and (3) enables increased
engagement in using technology by applying game me-
chanics. However, no reviews exist that provide an overview
of mobile games that aim to improve activity behavior in
daily life. Therefore, this review reports on such state-of-the-
art mobile activity games and reviews the following:

- theoretical foundations—from the point of view of both
 behavioral science and game design,
- game characteristics, such as the applied feedback
 mechanisms, and
- evaluation methodologies.

Materials and Methods

Selection criteria

The scope of the review includes scientific publications
that involve mobile games or gamified applications that aim
to improve daily physical activity in everyday life (i.e., focus
on opportunistic physical activity),17 excluding structured
exercise (i.e., exergaming). For this review we follow the
definition of McGonigal18 to define a game or gamified
application: a game identifies goals defining what the player
is expected to do (i.e., save the world, solve the mystery, etc.);
using actions regulated by a framework of rules; a feedback
system that lets the players know how they are doing; and
voluntary participation, so it is experienced as a safe and
pleasurable activity. In addition, studies should include an
evaluation of the mobile game or gamified application. As
this research area is still in its infancy, we report on all
scientific publications, including noncontrolled trials and
early-phase pilots.

Search procedures

A systematic search in literature databases (PubMed, Web
of Science, and the Association for Computing Machinery
[ACM] Digital Library) was performed. Articles in English or
Dutch published between January 2004 and June 2014 were
included. Key terms used in an array of arrangements with
Boolean operators to conduct searches were as follows:
“game” or “persuasive” or “play” AND “daily activity” or
“physical activity” AND “mobile” or “ambient” or “ubiq-
uitous” or “ambulant” or “daily life.” Medical subject
heading terms were used in PubMed. The thesaurus available
in Web of Science and ACM was used to ensure that relevant
key words were properly searched in each database. In addi-
tion, a manual search of relevant journals was carried out up
to July 2014. Finally, the reference lists of the included studies
were scanned to find further potentially relevant studies.

Data collection and extraction

The initial screening was based on the titles and abstracts
against the inclusion criteria to identify possible relevant
studies. Next, the relevant articles were screened based on
their full text for final inclusion, done separately by M.T.
and M.D-v.W. Possible disagreements about study inclu-
sion were discussed among the authors. For data extraction,
two review tables were constructed. The data extraction
was again conducted by the same reviewers (M.T. and

The first table focused on the theoretical foundations
(behavioral and gaming) and game characteristics (description,
goal setting in relation to physical activity, game elements, and
feedback mechanisms). For the game elements, we used the
“Ten Ingredients of Great Games”19: (1) self-representation
using metaphors or avatars, (2) three-dimensional environ-
ments, (3) narrative context, (4) feedback, (5) reputations, ranks,
and levels, (6) marketplaces and economies, (7) competition
under rules that are explicit and enforced, (8) teams, (9) parallel
communication systems, and (10) time pressure. Feedback
mechanisms were categorized according to the framework of
Dunwell et al.20: “a framework for the consideration of feed-
back in serious games,” which is an adapted version of the
classification of Rogers21 of feedback types. These feedback
types are feedback on status or scores (current and/or historical),
feedback on (goal) progression (current and/or historical),
feedback with experience to understanding.

The second table focused on the evaluation methodology
with the following categories: study characteristics (purpose,
setting), sample characteristics (target group, sample size,
age), and evaluation stage. For the latter, we used the Staged
Approach to evaluation of telemedicine of DeChant et al.,22
which suggests tailoring the type of assessment to the de-
velopment cycle of the technology. Broadly, the framework
differentiates between technology evaluation at application
levels (Stage 1–2) and global levels (Stage 3–4). Outcomes
of evaluation can be expressed in terms of a potential to
increase accessibility, to improve quality of care, or to de-
crease costs. Articles were assigned to one of the DeChant
stages as follows:

- Stage 1: Technical efficacy (assess accuracy, reliabil-
ity, and usability)
- Stage 2: Specific system objectives (assess single end
 points of access, quality, or cost)
- Stage 3: System analysis (assess global impact on ac-
 cess, quality, and cost)
- Stage 4: External validity (as in Stage 3 but applied in a
different system)
Results

In total, 797 articles were identified through the database search. After title and abstract were reviewed, 40 articles were considered for full review. In addition, seven articles were identified from reference tracking and searching relevant journals. Finally, 11 studies met all inclusion and exclusion criteria as described in the flow diagram of the inclusion process (Fig. 1) and were included in this review. The main reason for studies to be excluded was that the application did not include a game goal or gaming rules or did not focus on daily life activities, but rather on specific movements/exercises. The included studies were published between 2006 and 2014, and most of them within the last 5 years. Each of the studies described the evaluation of a distinct game concept for promoting physical activity in daily life.

Theoretical foundations

Table 1 shows limited theoretical foundation for the game development in the included studies. In Xu et al., their game was founded on the ecological model of health behavior change for physical activity of Sallis et al. Instead of treating health behaviors as personal responsibilities, ecological models emphasize the environmental, social, and policy contexts of human behaviors. Other studies used parts from theories or models for their game design. Rodríguez et al. used triggers for physical activity, based on the behavioral model of Fogg, and incorporated historical information and reflection, based on the Cognitive Dissonance Theory, to help the user to remain focused on the commitment to change by making him or her aware of past behavior as it relates to set goals. Both Munson and Consolvo and Zuckerman and Gal-Oz incorporated goal setting as a design element in their applications, thereby referring to the Goal Setting Theory. Zuckerman and Gal-Oz in addition incorporated two gamification elements to identify their effectiveness: virtual rewards, as they can reduce intrinsic motivation according to the self-determination theory, and social comparison, thereby referring to Festinger.

Game characteristics

Table 1 shows the game characteristics of the 11 games from the included articles. All studies focused on activity behavior, the one more in general and the other more specific, such as increase in number of steps. The majority of the games were played on a mobile phone alone; of the remaining games evaluated, one was with connection to a computer display, versus others on a computer display alone. Some applications made connection to third parties (like Facebook). Activity was designed to be

FIG. 1. Flow diagram of inclusion process. ACM, Association for Computing Machinery.
<table>
<thead>
<tr>
<th>Reference (year)</th>
<th>Game</th>
<th>Theoretical foundation</th>
<th>Description of the game</th>
<th>Game goal relative to PA</th>
<th>Game elements<sup>a</sup></th>
<th>Feedback mechanism<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Athinen et al. 23 (2010)</td>
<td>“Into”</td>
<td>Not stated</td>
<td>Users set challenge and travel on a map based on their step count. PA is visualized as a virtual trip on a map. Play alone or on a team.</td>
<td>Challenge by user (e.g., from Helsinki to Tampere)</td>
<td>Use of metaphors, Teams/cooperation, Competition, Rewards</td>
<td>Feedback on status (current)</td>
</tr>
<tr>
<td>Bielik et al. 24 (2012)</td>
<td>“Move2PlayKids”</td>
<td>Not stated</td>
<td>Personalized activity recommendation for children using an avatar, with monitoring application for parents.</td>
<td>Rule-based PA recommendation as daily/weekly plans</td>
<td>Competition, Sharing (social network), Levels, Teams, Rewards, Avatars, Competition, Avatars, Rewards</td>
<td>Feedback on status or scores (current)</td>
</tr>
<tr>
<td>Fujiki et al. 25 (2008)</td>
<td>“Neat-o-games”</td>
<td>Not stated</td>
<td>Player chooses a couch avatar. When the player moves, the avatar moves, and activity points are accumulated. Players can compete with opponents for activity points.</td>
<td>—</td>
<td>Feedback on status or score (current and historical)</td>
<td>Feedback to encourage</td>
</tr>
<tr>
<td>Jensen et al. 26 (2010)</td>
<td>“PH.A.N.T.O.M.”</td>
<td>Not stated</td>
<td>Mixed reality game merging real everyday life with the game world. The player is put in a role of an agent working undercover as a student at a university.</td>
<td>Mission to complete with three objectives and a bonus task</td>
<td>Use of metaphors, Narrative context (storyline), Rewards, Competition, Ranks, Levels, Time pressure, Bonus task</td>
<td>Feedback on goal progression (current)</td>
</tr>
<tr>
<td>Lin et al. 27 (2006)</td>
<td>“Fish’n’Steps”</td>
<td>Not stated</td>
<td>The number of steps is mapped to the growth and emotional state of a fish in a fish tank.</td>
<td>Overall goal in step count based on baseline step count (pre-intervention 4 weeks)</td>
<td>Use of metaphors, Teams/cooperation, Competition between teams, Parallel communication, Rewards, Reminders, Sharing</td>
<td>Feedback on status or score (current)</td>
</tr>
<tr>
<td>Munson and Consolvo 28 (2012)</td>
<td>“GoalPost/ GoalLine”</td>
<td>Goal Setting Theory (partly)</td>
<td>It supports setting weekly PA goals, journaling PA, receiving virtual rewards, and reviewing past progress.</td>
<td>Users set primary and secondary goals for a calendar week. Goals are broken down by category. Setting a goal in time for exercising</td>
<td>Use of metaphors, Rewards</td>
<td>Feedback on goal progression (current and historical)</td>
</tr>
<tr>
<td>Rodríguez et al. 29 (2013)</td>
<td>“CAMMIInA”</td>
<td>Cognitive Dissonance Theory, Behavioral model of Fogg (partly)</td>
<td>Provides elders with notifications and representations of their PA performance</td>
<td>—</td>
<td>—</td>
<td>Feedback on goal progression (current and historical)</td>
</tr>
</tbody>
</table>

^a Game elements: Teams, Cooperation, Competition, Rewards, Avatars, Levels, Narrative context, Reminders, Sharing, Parallel communication, Reward system, Time pressure, Goal setting, Meta-phenomenology, User experience, Feedback mechanisms, and User interface.

^b Feedback mechanisms: Feedback on status, Progress, Goal, Score, Challenge, Feedback to encourage, Reminder, Sharing, Competition, Levels, Ranks, Time pressure, Reward system, Goal setting, Meta-phenomenology, User experience, Feedback mechanisms, and User interface.

(continued)
<table>
<thead>
<tr>
<th>Reference (year)</th>
<th>Game</th>
<th>Theoretical foundation</th>
<th>Description of the game</th>
<th>Game goal relative to PA</th>
<th>Game elements</th>
<th>Feedback mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stanley et al. 30 (2008)</td>
<td>“RealTime Chess”</td>
<td>Not stated</td>
<td>Real-time multiplayer videogame, allowing 2–32 players to play chess at their own computers. Not turn-based, but pieces should be moved as quickly as possible. Daily activity influences player strategies for the chess game.</td>
<td>—</td>
<td>Rewards</td>
<td>Competition Teams</td>
</tr>
<tr>
<td>Walsh and Golbeck 31 (2014)</td>
<td>“StepCity”</td>
<td>Not stated</td>
<td>A social game that uses FitBit steps as currency. Players can buy buildings in their city that produce gold and increase population. Low-cost buildings have more crime.</td>
<td>—</td>
<td>Use of metaphors Leaderboard Parallel communication Market places</td>
<td></td>
</tr>
<tr>
<td>Xu et al. 32 (2012)</td>
<td>“American Horsepower Challenge”</td>
<td>Ecological model of health behavior change for PA (Sallis et al. 34)</td>
<td>A pedometer-based pervasive health game. Student can earn points for their school by PA. Step counts are aggregated daily, and position on the racetrack was updated. Schools are presented as school busses on racetracks, and students as horse avatars. The avatar is customizable by the virtual currency (earned by PA).</td>
<td>—</td>
<td>Use of metaphors Competition Teams/cooperation Rewards Avatars Ranks Market places (virtual currency)</td>
<td></td>
</tr>
</tbody>
</table>

Game elements 35 (i.e., self-representation using metaphors or avatars, three-dimensional environments, narrative context, feedback, reputations, ranks, and levels, marketplaces and economies, competition under rules that are explicit and enforced, teams, parallel communication systems, and time pressure).

Feedback mechanisms 36 (i.e., feedback on status or scores, feedback on [goal] progression, feedback to encourage, feedback with a user interaction model, and feedback with experience to understanding).

PA, physical activity.
assessed by the built-in sensors of the mobile phone, or by a separate pedometer or accelerometer, by monitoring GPS data, or by adding activities in a physical activity journal on the phone.

Most studies (63 percent) used goal setting as a motivation strategy to encourage physical activity (e.g., step count, time for exercising). Four studies did not use any goal setting in relation to physical activity.

The present review shows a large variety of gaming concepts, with a minimum of two game elements and a maximum of nine used. Rewards and competition are the game elements that were used the most by the studies: 81 percent and 72 percent, respectively, of the studies. Most studies (72 percent) used metaphors or avatars to visualize activity. For example, Lin et al. presented the level of physical activity with a bowl of growing fish, whereas Fujiki et al. used a couch avatar, which is a caricature of a well-known athlete, politician, or actor.

In most studies, feedback on status or scores and feedback on goal progression as feedback mechanisms are used together. They provided real-time feedback based on current physical activity status in relation to the goal setting. Only a few showed historical information on goals reached in the past. Few included encouraging feedback. For example, Fujiki et al. sent an alert to the player when the opponent was too far ahead or a congratulatory message when the player was far ahead. Only two studies showed feedback on received scores in the past. For example, Xu et al. showed the step history.

Evaluation

The included studies targeted children, the elderly, the general public, colleagues, university students, Facebook members, or persons who are in the same social groups. Sample size ranged from 8 to 1743 participants, with a median of 19. The interventions ranged from a single gameplay session to multiple days or weeks of use, with a median use of 10 days (range, 1–98 days).

As shown in Table 2, the majority of the studies reported on a Stage 1 evaluation study focusing on usability, feasibility, or acceptability. Usability and acceptability were mainly assessed using interviews or questionnaires. Four studies investigated whether the game could meet the system’s objectives (i.e., the effect on behavioral change, the adoption in the real world, the change in physical activity, and walking behavior) and are thus considered a Stage 2 evaluation. For this, two studies used a randomized controlled design: within-subjects (three conditions) and between groups (three conditions), where in both studies a condition was applied for a 10-day period. Lin et al. randomly assigned participants to a team condition or a single player condition but did not have a control group without game elements, whereas Xu et al. had a mixed methods approach. For all Stage 2 studies we could observe that the evaluation methodology was scarcely described, lacking information about, for example, data and statistical analysis, randomization procedure, blinding, or power calculation.

Outcomes

The two studies with a randomized controlled design showed no effects for activity behavior based on the condition. In other words, the addition of game elements did not have a beneficial effect in these studies. In the study of Walsh et al., further analysis showed that newer Fitbit (Fitbit, San Francisco, CA) users took more steps when using the “StepCity” game than they did in a control condition, although trending ($P = 0.09$).

Discussion

The present review provides an overview of current mobile games that aim to improve activity behavior in daily life, with regard to the applied theoretical foundations, game characteristics, and evaluation methodologies. Eleven studies were included.

This review shows limited theoretical foundation for the game development for the majority of the mobile games. Instead, most used parts of theories or looked into useful design strategies from existing physical activity applications. For example, Bielik et al. identified key design requirements based on three literature reviews, which resulted in a system that applied several intrinsic and extrinsic motivational factors. However, literature suggests that interventions that are based on behavioral theory or use tailored feedback based on behavioral theories show significantly larger effect sizes than interventions without theory foundation.

Using health behavior theory to guide intervention design may thus increase intervention effectiveness. Indeed, in our review, the theory-based “American Horsepower Challenge” showed a significant increase in physical activity compared with baseline, although with a small effect size. Achterkamp et al., who analyzed data from participants who used an ambulant activity coach in daily life, suggested that especially self-efficacy and stage of change (part of the Transtheoretical Model) are two aspects from behavioral change theories that appear important when developing technology-supported physical activity interventions. As such, we would expect that the incorporation of behavioral theories similarly applied in technology-supported physical activity interventions could positively contribute to the effects of mobile games in changing physical activity behavior. Research into motivational theoretical models for games would be an interesting path to continue research and design methodologies.

Goal setting was a common element in the design of the games in our review, and research regarding physical activity interventions already showed that combining goal setting and (persuasive) technologies can significantly improve the results of interventions that focus on physical activity. Goal setting enables the player to extrapolate what is learned in the game to his or her own real life. Rodriguez et al. incorporated historical information and reflection, to help the user to remain focused on the commitment to change by making him or her aware of past behavior as it relates to set goals. This largely resembles the Goal Setting Theory, in which goals have been shown to be most effective when they are important to the individual, realistic, shown in relation to the user’s progress, and combined with positive feedback as progress toward the goal is made. Zuckerman and Gal-Oz showed that offering continuous measurement of walking time, a daily goal, and real-time feedback on progress toward this goal facilitated reflection on activity and significantly increased walking time over the baseline level.
<table>
<thead>
<tr>
<th>Reference (year)</th>
<th>Game</th>
<th>Purpose of study</th>
<th>Setting of study</th>
<th>Target group</th>
<th>Sample size</th>
<th>Age (years)</th>
<th>Evaluation stage (DeChant)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Athinen et al.23 (2010)</td>
<td>“Into”</td>
<td>Examine participant’s subjective responses toward “Into,” focusing on PA as a virtual trip</td>
<td>Team with a team leader who sets challenges</td>
<td>Existing social groups</td>
<td>37 (31 females, 6 males)</td>
<td>(20–55)</td>
<td>Stage 1</td>
</tr>
<tr>
<td>Bielik et al.24 (2012)</td>
<td>“Move2PlayKids”</td>
<td>User testing</td>
<td>Primary school</td>
<td>Children 10–18 years old</td>
<td>12</td>
<td>(12–13)</td>
<td>Stage 1</td>
</tr>
<tr>
<td>Fujiki et al.25 (2008)</td>
<td>“Neat-o-games”</td>
<td>To investigate trends in behavioral change</td>
<td>Daily life</td>
<td>Colleagues in the same organizational unit</td>
<td>10 (8 females, 2 males)</td>
<td>37.9</td>
<td>Stage 1</td>
</tr>
<tr>
<td>Jensen et al.26 (2010)</td>
<td>“PH.A.N.T.O.M.”</td>
<td>To evaluate the user experience and persuasiveness of the game</td>
<td>In the field</td>
<td>Students of the campus</td>
<td>9 (all men)</td>
<td>—</td>
<td>Stage 1</td>
</tr>
<tr>
<td>Lin et al.27 (2006)</td>
<td>“Fish’n’Seps”</td>
<td>To evaluate the effect of “Fish’n’Seps” on behavioral change</td>
<td>Daily life</td>
<td>Staff of Siemens corporate research</td>
<td>19</td>
<td>(23–63)</td>
<td>Stage 2</td>
</tr>
<tr>
<td>Munson and Consolvo28 (2012)</td>
<td>“GoalPost/GoalLine”</td>
<td>To investigate how people respond to the four strategies</td>
<td>Daily life</td>
<td>General public with active Facebook account and iPhone, who were in the contemplation, preparation or action phase (TTM)</td>
<td>23</td>
<td>(20–50)</td>
<td>Stage 1</td>
</tr>
<tr>
<td>Rodríguez et al.29 (2013)</td>
<td>“CAMMInA”</td>
<td>To evaluate the persuasive strategies used in “CAMMInA”</td>
<td>Senior center</td>
<td>Elderly</td>
<td>15</td>
<td>(63–86)</td>
<td>Stage 1</td>
</tr>
<tr>
<td>Stanley et al.30 (2008)</td>
<td>“RealTime Chess”</td>
<td>Investigate how to effectively integrate accumulated context into play environments</td>
<td>Daily round-robin tournament. Paired with a different teammate for each session. Interview after each play</td>
<td>Local university</td>
<td>8 males</td>
<td>23 (19–34)</td>
<td>Stage 1</td>
</tr>
<tr>
<td>Walsh and Golbeck31 (2014)</td>
<td>“StepCity”</td>
<td>To investigate whether (1) a social game and (2) simple interaction experience encourage users to take more steps than otherwise</td>
<td>Daily life</td>
<td>Not stated</td>
<td>74</td>
<td>37.7 (23–63)</td>
<td>Stage 2</td>
</tr>
<tr>
<td>Xu et al.32 (2012)</td>
<td>“American Horsepower Challenge”</td>
<td>To study how pervasive AVGs are adopted in the real-world context</td>
<td>Inside and outside school</td>
<td>Middle-school students</td>
<td>1743</td>
<td>(10–13)</td>
<td>Stage 2</td>
</tr>
<tr>
<td>Zuckerman and Gal-Oz33 (2014)</td>
<td>“StepByStep”</td>
<td>Systematically evaluate the effectiveness of several gamification elements</td>
<td>Daily life</td>
<td>Undergraduate communications students</td>
<td>59 (44 females, 15 males)</td>
<td>23.4 (20–27)</td>
<td>Stage 2</td>
</tr>
</tbody>
</table>

AVG, active videogame; TTM, Transtheoretical Model.
Such examples also show the evident overlap between game characteristics and behavior change techniques. As this is both theory-founded and has been shown to be an effective component of interventions to promote physical activity, self-monitoring, goal setting, and encouraging feedback should preferably be combined in mobile gaming applications that aim to promote physical activity. We would expect that by including behavioral aspects into the game of an individual player, adapted to, for example, self-efficacy, this could probably create a game that is more effective.

To increase the motivation of the user to engage with the game, the reviewed studies included two to nine game elements. Metaphors or avatars are commonly used to represent the monitored activity to the user. The use of metaphors and avatars is common and reasonable in game design, but also in persuasive design: showing physical activity levels as, for example, a flower, a garden, or art. Such metaphorical displays are in general well accepted and positively received. Lin et al. specifically showed that exhibiting activity through the growth and emotional state of virtual fish indeed increased users’ awareness of their levels of physical activity and increased their motivation to exercise. As abstract presentations of activity (e.g., by a graph) have shown a decreasing adherence after a few weeks of use, such metaphors seem a promising tool for motivation in mobile gaming applications.

The review shows that virtual rewards and social comparison (competition) were the two most commonly implemented elements. Zuckerman and Gal-Oz investigated the added value of these two gamification elements in their application but did not find a significant contribution of the game elements. Reeves and Read distinguished 10 game elements, but this does not mean a great game should contain all elements; this could even become an overload. To our knowledge, clear recommendations on what game elements are most suitable to increase engagement with a mobile game are not yet available. As mentioned elsewhere, most systems are evaluated as a whole, and different elements of the applications then confound. Systematic evaluation of the effectiveness and added value of game elements for better understanding their motivational contributions should be an important field of research.

The majority of the evaluations of the reviewed studies are still in their infancy, showing as mainly Stage 1/2 evaluations, and no large clinical trials on clinical or cost-effectiveness are really available. This review did not report on evaluation outcomes, and meta-analysis is by far not possible in this new field of research. Therefore it is difficult to say whether these mobile games/applications can contribute to actual behavior change, also because the majority of studies were short term, with a lack of power or low methodological quality. Furthermore, from this review it also became apparent that the games were developed for and evaluated with healthy individuals. Only one has been developed for the elderly and none for persons with a (chronic) disease, although these are the groups that would benefit from the most a physically active lifestyle. Clearly, we need more substantial research on the effects of mobile gaming applications, and future reviews should focus on the potential effect of gaming applications on physical activity in daily life, preferably following a structured reporting method (e.g., PRISMA).

Strengths and limitations

In this review, we chose several definitions, selection criteria, and methodologies for the analysis of the studies, as to our knowledge no standard framework is yet available. For example, we chose the “10 ingredients of great games” for scoring game elements in the included studies, despite the possible incompleteness of this list. Our choices could have influenced the reported results: for example, we excluded applications that did not include a game goal, rules, and feedback, thereby excluding studies evaluating persuasive applications like Flowie. Especially in this field of research, authors have defined design guidelines for motivating applications to change daily activity, where goal setting, awareness, and ubiquity seem important elements.

The application of gaming in mobile interventions to change daily activity behavior is new and upcoming. This review provides an overview of mobile games, regardless the technology readiness level (e.g., proof of concept or complete), as we did not limit the review to randomized controlled trials. We executed the search in different fields of expertise (i.e., health, psychology, and computer science). It has to be noted that many game developments arise outside the scientific world, from which we could learn motivating gaming aspects. For example, “Zombies, Run!” is a very popular mobile game, in which you can walk, run, or jog in the real world while you are on a story mission in the mobile game, chased by zombies and collecting supplies to rebuild your town.

Conclusions

This review provides a first overview of a new research area: mobile activity games to promote physical activity in daily life. The reviewed studies show that there is a limited theoretical foundation for the game development, and most studies used goal setting as a motivation strategy to engage people in playing the game. Metaphors were used to visualize the monitored activity, whereas feedback was mostly provided in relation to the goal. Rewards and competition were the most commonly incorporated game elements. However, substantial evaluations of the mobile games are not yet available, and additional efficacy trials are needed to establish the impact of mobile gaming application on daily physical activity.

Acknowledgments

This research is part of the MAGGY project. Financial support was provided by The Netherlands Organization for Scientific Research, Creative Industry Program (project number 314-99-002).

Author Disclosure Statement

No competing financial interests exist.

References

2. Lee IM, Shiroma EJ, Lobelo F, et al. Effect of physical inactivity on major non-communicable diseases worldwide:

Address correspondence to:
Monique Tabak, PhD
Telemedicine Group
Faculty of Electrical Engineering, Mathematics and Computer Science
University of Twente
Drienerlolaan 5
P.O. Box 217
7500 AE Enschede, The Netherlands
E-mail: m.tabak@utwente.nl